Selected Publications


  1. Sporadic feeding regulates robust food entrainable circadian clocks in blind cavefish
    Di Rosa, V.; Frigato, E.; Negrini, P.; Cristiano, W.; López-Olmeda, J. F.; Rétaux, S.; Sánchez-Vázquez, F. J.; Foulkes, N. S.; Bertolucci, C.
    2024. iScience, 27 (7), 110171. doi:10.1016/j.isci.2024.110171
  2. Reactive Oxygen Species Signaling and Oxidative Stress: Transcriptional Regulation and Evolution
    Hong, Y.; Boiti, A.; Vallone, D.; Foulkes, N. S.
    2024. Antioxidants, 13 (3), Art.-Nr.: 312. doi:10.3390/antiox13030312
  3. Role of melanocortin system in the locomotor activity rhythms and melatonin secretion as revealed by agouti‐signalling protein ( asip1 ) overexpression in zebrafish
    Godino-Gimeno, A.; Leal, E.; Chivite, M.; Tormos, E.; Rotllant, J.; Vallone, D.; Foulkes, N. S.; Míguez, J. M.; Cerdá-Reverter, J. M.
    2024. Journal of Pineal Research, 76 (1), Art.-Nr.: e12939. doi:10.1111/jpi.12939
  4. Establishment of cell lines from individual zebrafish embryos
    Geyer, N.; Kaminsky, S.; Confino, S.; Livne, Z. B.-M.; Gothilf, Y.; Foulkes, N. S.; Vallone, D.
    2023. Laboratory Animals, 57 (5), 518–528. doi:10.1177/00236772231157162
  5. Photobiology: Fish eggs go sunny side up
    Foulkes, N. S.
    2023. Current Biology, 33 (15), R810–R812. doi:10.1016/j.cub.2023.06.078
  6. Nickel oxide nanoparticles induce developmental neurotoxicity in zebrafish by triggering both apoptosis and ferroptosis
    Wang, Z.; Bi, Y.; Li, K.; Song, Z.; Pan, C.; Zhang, S.; Lan, X.; Foulkes, N. S.; Zhao, H.
    2023. Environmental Science: Nano, 10 (2), 640–655. doi:10.1039/d2en00757f
  7. Ferroptosis contributes to nickel-induced developmental neurotoxicity in zebrafish
    Wang, Z.; Li, K.; Xu, Y.; Song, Z.; Lan, X.; Pan, C.; Zhang, S.; Foulkes, N. S.; Zhao, H.
    2023. Science of The Total Environment, 858, Article no: 160078. doi:10.1016/j.scitotenv.2022.160078
  8. Negative phototaxis in the photosymbiotic sea anemone Aiptasia as a potential strategy to protect symbionts from photodamage
    Kishimoto, M.; Gornik, S. G.; Foulkes, N. S.; Guse, A.
    2023. Scientific Reports, 13 (1), Art.-Nr.: 17857. doi:10.1038/s41598-023-44583-9
  9. Comparison of anxiety-like and social behaviour in medaka and zebrafish
    Lucon-Xiccato, T.; Loosli, F.; Conti, F.; Foulkes, N. S.; Bertolucci, C.
    2022. Scientific Reports, 12 (1), Art.Nr. 10926. doi:10.1038/s41598-022-14978-1
  10. Medaka as a model for seasonal plasticity: Photoperiod-mediated changes in behaviour, cognition, and hormones
    Lucon-Xiccato, T.; Montalbano, G.; Frigato, E.; Loosli, F.; Foulkes, N. S.; Bertolucci, C.
    2022. Hormones and Behavior, 145, Article no: 105244. doi:10.1016/j.yhbeh.2022.105244
  11. A Zebrafish Model for a Rare Genetic Disease Reveals a Conserved Role for FBXL3 in the Circadian Clock System
    Confino, S.; Dor, T.; Tovin, A.; Wexler, Y.; Ben-Moshe Livne, Z.; Kolker, M.; Pisanty, O.; Park, S. K.; Geyer, N.; Reiter, J.; Edvardson, S.; Mor-Shaked, H.; Elpeleg, O.; Vallone, D.; Appelbaum, L.; Foulkes, N. S.; Gothilf, Y.
    2022. International Journal of Molecular Sciences, 23 (4), Artkl.Nr.: 2373. doi:10.3390/ijms23042373
  12. Early-life lead exposure induces long-term toxicity in the central nervous system: From zebrafish larvae to juveniles and adults
    Wang, Z.; Zhao, H.; Xu, Y.; Zhao, J.; Song, Z.; Bi, Y.; Li, Y.; Lan, X.; Pan, C.; Foulkes, N. S.; Zhang, S.
    2022. The science of the total environment, 804, Art.Nr. 150185. doi:10.1016/j.scitotenv.2021.150185
  13. A stochastic oscillator model simulates the entrainment of vertebrate cellular clocks by light
    Kumpošt, V.; Vallone, D.; Gondi, S. B.; Foulkes, N. S.; Mikut, R.; Hilbert, L.
    2021. Scientific reports, 11 (1), Art.-Nr.: 14497. doi:10.1038/s41598-021-93913-2
  14. Long photoperiod impairs learning in male but not female medaka
    López-Olmeda, J. F.; Zhao, H.; Reischl, M.; Pylatiuk, C.; Lucon-Xiccato, T.; Loosli, F.; Foulkes, N. S.
    2021. iScience, 24 (7), Art. Nr.: 102784. doi:10.1016/j.isci.2021.102784
  15. Photoreceptor Diversification Accompanies the Evolution of Anthozoa
    Gornik, S. G.; Bergheim, B. G.; Benoit, M.; Stamatakis, A.; Foulkes, N. S.; Guse, A.
    2021. Molecular biology and evolution, 38 (5), 1744–1760. doi:10.1093/molbev/msaa304
  16. Regulation of ddb2 expression in blind cavefish and zebrafish reveals plasticity in the control of sunlight-induced DNA damage repair
    Zhao, H.; Li, H.; Du, J.; Di Mauro, G.; Lungu-Mitea, S.; Geyer, N.; Vallone, D.; Bertolucci, C.; Foulkes, N. S.
    2021. PLoS Genetics, 17 (2), Art.-Nr. e1009356. doi:10.1371/JOURNAL.PGEN.1009356
  17. Period 2: A Regulator of Multiple Tissue-Specific Circadian Functions
    Ruggiero, G.; Ben-Moshe Livne, Z.; Wexler, Y.; Geyer, N.; Vallone, D.; Gothilf, Y.; Foulkes, N. S.
    2021. Frontiers in Molecular Neuroscience, 14, Art.Nr. 718387. doi:10.3389/fnmol.2021.718387
  18. Finding Nemo’s clock reveals switch from nocturnal to diurnal activity
    Schalm, G.; Bruns, K.; Drachenberg, N.; Geyer, N.; Foulkes, N. S.; Bertolucci, C.; Gerlach, G.
    2021. Scientific Reports, 11 (1), Art.-Nr.: 6801. doi:10.1038/s41598-021-86244-9
  19. Remembering Paolo: A tribute to Paolo Sassone-Corsi
    Foulkes, N. S.; Eckel-Mahan, K.; Cermakian, N.
    2020. Journal of pineal research, 69 (4), Art.Nr. e12692. doi:10.1111/jpi.12692
  20. Development of Open-Field Behaviour in the Medaka, Oryzias latipes
    Lucon-Xiccato, T.; Conti, F.; Loosli, F.; Foulkes, N. S.; Bertolucci, C.
    2020. Biology, 9 (11), Article: 389. doi:10.3390/biology9110389
  21. YB-1 recruitment to stress granules in zebrafish cells reveals a differential adaptive response to stress
    Guarino, A. M.; Mauro, G. D.; Ruggiero, G.; Geyer, N.; Delicato, A.; Foulkes, N. S.; Vallone, D.; Calabrò, V.
    2019. Scientific reports, 9 (1), Article no: 9059. doi:10.1038/s41598-019-45468-6
  22. Differential circadian and light-driven rhythmicity of clock gene expression and behaviour in the turbot, Scophthalmus maximus
    Ceinos, R. M.; Chivite, M.; López-Patiño, M. A.; Naderi, F.; Soengas, J. L.; Foulkes, N. S.; Míguez, J. M.
    2019. PLOS ONE, 14 (7), e0219153. doi:10.1371/journal.pone.0219153
  23. Evolution Shapes the Gene Expression Response to Oxidative Stress
    Siauciunaite, R.; Foulkes, N. S.; Calabrò, V.; Vallone, D.
    2019. International journal of molecular sciences, 20 (12), Art.Nr.: 3040. doi:10.3390/ijms20123040
  24. DIY Automated Feeding and Motion Recording System for the Analysis of Fish behaviour
    Pylatiuk, C.; Zhao, H.; Gursky, E.; Reischl, M.; Peravali, R.; Foulkes, N.; Loosli, F.
    2019. SLAS technology, 24 (4), 394–398. doi:10.1177/2472630319841412
  25. Modulation of DNA Repair Systems in Blind Cavefish during Evolution in Constant Darkness
    Zhao, H.; Di Mauro, G.; Lungu-Mitea, S.; Negrini, P.; Guarino, A. M.; Frigato, E.; Braunbeck, T.; Ma, H.; Lamparter, T.; Vallone, D.; Bertolucci, C.; Foulkes, N. S.
    2018. Current biology, 28 (20), 3229–3243.e4. doi:10.1016/j.cub.2018.08.039
  26. Evolution shapes the responsiveness of the D-box enhancer element to light and reactive oxygen species in vertebrates
    Pagano, C.; Siauciunaite, R.; Idda, M. L.; Ruggiero, G.; Ceinos, R. M.; Pagano, M.; Frigato, E.; Bertolucci, C.; Foulkes, N. S.; Vallone, D.
    2018. Scientific reports, 8 (1), Art.-Nr.:13180 /1–17. doi:10.1038/s41598-018-31570-8
  27. Interactions between the circadian clock and TGF-β signaling pathway in zebrafish
    Sloin, H. E.; Ruggiero, G.; Rubinstein, A.; Smadja Storz, S.; Foulkes, N. S.; Gothilf, Y.
    2018. PLoS one, 13 (6), e0199777. doi:10.1371/journal.pone.0199777
  28. Mutations in blind cavefish target the light-regulated circadian clock gene, period 2
    Ceinos, R. M.; Frigato, E.; Pagano, C.; Fröhlich, N.; Negrini, P.; Cavallari, N.; Vallone, D.; Fuselli, S.; Bertolucci, C.; Foulkes, N. S.
    2018. Scientific reports, 8, Art.Nr.: 8754. doi:10.1038/s41598-018-27080-2
  29. The fish circadian timing system: The illuminating case of light-responsive peripheral clocks
    Pagano, C.; Ceinos, R. M.; Vallone, D.; Foulkes, N. S.
    2017. Biological Timekeeping: Clocks, Rhythms and Behaviour. Ed. V. Kumar, 177–192, Springer India. doi:10.1007/978-81-322-3688-7_7
  30. Instrument design and protocol for the study of light controlled processes in aquatic organisms, and its application to examine the effect of infrared light on zebrafish
    Dekens, M. P. S.; Foulkes, N. S.; Tessmar-Raible, K.
    2017. PLoS one, 12 (2), Art. Nr. e0172038. doi:10.1371/journal.pone.0172038
  31. Genetically Blocking the Zebrafish Pineal Clock Affects Circadian Behavior
    Ben-Moshe Livne, Z.; Alon, S.; Vallone, D.; Bayleyen, Y.; Tovin, A.; Shainer, I.; Nisembaum, L. G.; Aviram, I.; Smadja-Storz, S.; Fuentes, M.; Falcón, J.; Eisenberg, E.; Klein, D. C.; Burgess, H. A.; Foulkes, N. S.; Gothilf, Y.
    2016. PLoS Genetics, 12 (11), e1006445. doi:10.1371/journal.pgen.1006445
  32. Relaxed selective constraints drove functional modifications in peripheral photoreception of the cavefish P. andruzzii and provide insight into the time of cave colonization
    Calderoni, L.; Rota-Stabelli, O.; Frigato, E.; Panziera, A.; Kirchner, S.; Foulkes, N. S.; Kruckenhauser, L.; Bertolucci, C.; Fuselli, S.
    2016. Heredity, 117 (5), 383–392. doi:10.1038/hdy.2016.59
  33. Studying the Evolution of the Vertebrate Circadian Clock: The Power of Fish as Comparative Models
    Foulkes, N., S.; Whitmore, D.; Vallone, D.; Bertolucci, C.
    2016. Genetics, Genomics and Phenomics of Fish. Ed. N.S. Foulkes, 1–30, Academic Press. doi:10.1016/bs.adgen.2016.05.002
  34. Cavefish eye loss in response to an early block in retinal differentiation progression
    Stemmer, M.; Schuhmacher, L. N.; Foulkes, N. S.; Bertolucci, C.; Wittbrodt, J.
    2015. Development <Cambridge>, 142, 743–752. doi:10.1242/dev.114629
  35. Functional development of the circadian clock in the zebrafish pineal gland
    Ben-Moshe, Z.; Foulkes, N. S.; Gothilf, Y.
    2014. BioMed Research International, 2014, 235781. doi:10.1155/2014/235781
  36. The light-induced transcriptome of the zebrafish pineal gland reveals complex regulation of the circadian clockwork by light
    Ben-Moshe, Z.; Alon, S.; Mracek, P.; Faigenbloom, L.; Tovin, A.; Vatine, G. D.; Eisenberg, E.; Foulkes, N. S.; Gothilf, Y.
    2014. Nucleic Acids Research, 42 (6), 3750–3767. doi:10.1093/nar/gkt1359
  37. Effect of lighting conditions on zebrafish growth and development
    Villamizar, N.; Vera, L. M.; Foulkes, N. S.; Sanchez-Vazquez, F. J.
    2014. Zebrafish, 11, 173–181. doi:10.1089/zeb.2013.0926
  38. Developmental stage-specific regulation of the circadian Clock by Temperature in Zebrafish
    Lahiri, K.; Froehlich, N.; Heyd, A.; Foulkes, N. S.; Vallone, D.
    2014. BioMed Research International, 2014, 930308. doi:10.1155/2014/930308
  39. Differential maturation of rhythmic clock gene expression during early development in medaka (Oryzias latipes)
    Cuesta, I. H.; Lahiri, K.; Lopez-Olmeda, J. F.; Loosli, F.; Foulkes, N. S.; Vallone, D.
    2014. Chronobiology international, 31 (4), 468–478. doi:10.3109/07420528.2013.856316
  40. ERK Signaling Regulates Light-Induced Gene Expression via D-Box Enhancers in a Differential, Wavelength-Dependent Manner
    Mracek, P.; Pagano, C.; Fröhlich, N.; Idda, M. L.; Cuesta, I. H.; Lopez-Olmeda, J. F.; Sánchez-Vázquez, F. J.; Daniela Vallone, D.; Foulkes, N. S.
    2013. PLoS one, 8 (6), Art.Nr. e67858. doi:10.1371/journal.pone.0067858
  41. Circadian clocks, rhythmic synaptic plasticity and the sleep-wake cycle in zebrafish
    Elbaz, I.; Foulkes, N. S.; Gothilf, Y.; Appelbaum, L.
    2013. Frontiers in neural circuits, 7, 9. doi:10.3389/fncir.2013.00009
  42. Casein kinase 1δ activity: a key element in the zebrafish cricadian timing system
    Smadja-Storz, S.; Tovin, A.; Mracek, P.; Alon, S.; Foulkes, N. S.; Gothilf, Y.
    2013. PLoS One, 8, e54189/1–10. doi:10.1371/journal.pone.0054189
  43. Report of the second European Zebrafish principal investigator meeting in Karlsruhe, Germany, March 21-24, 2012
    Cavodeassi, F.; Del Bene, F.; Fürthauer, M.; Grabner, C.; Herzog, W.; Lehtonen, S.; Linker, C.; Mercader, N.; Mikut, R.; Norton, W.; Strähle, U.; Tiso, N.; Foulkes, N. S.
    2013. Zebrafish, 10 (1), 119–123. doi:10.1089/zeb.2012.0829
  44. Circadian Timing of Injury-Induced Cell Proliferation in Zebrafish
    Idda, M. L.; Kage, E.; Lopez-Olmeda, J. F.; Mracek, P.; Foulkes, N. S.; Vallone, D.
    2012. PLoS one, 7 (3), Art.Nr. e34203. doi:10.1371/journal.pone.0034203
  45. Systematic identification of rhythmic genes reveals camk1gb as a new element in the circadian clockwork
    Tovin, A.; Alon, S.; Ben-Moshe, Z.; Mracek, P.; Vatine, G.; Foulkes, N. S.; Jacob-Hirsch, J.; Rechavi, G.; Toyama, R.; Coon, S. L.; Klein, D. C.; Eisenberg, E.; Gothilf, Y.
    2012. PLoS Genetics, 8, e1003116/1–11. doi:10.1371/journal.pgen.1003116
  46. Encephalic photoreception and phototactic response in the troglobiont Somalian blind cavefish Phreatichthys andruzzii
    Tarttelin, E. E.; Frigato, E.; Bellingham, J.; Rosa, V. di; Berti, R.; Foulkes, N. S.; Lucas, R. J.; Bertolucci, C.
    2012. Journal of Experimental Biology, 215, 2898–2903. doi:10.1242/jeb.071084
  47. Regulation of per and cry genes reveals a central role for the D-box enhancer in light-dependent gene expression
    Mracek, P.; Santoriello, C.; Idda, M. L.; Pagano, C.; Ben-Moshe, Z.; Gothilf, Y.; Vallone, D.; Foulkes, N. S.
    2012. PLoS One, 7, e51278/1–12. doi:10.1371/journal.pone.0051278
  48. Circadian clocks: lessons from fish
    Idda, M. L.; Bertolucci, C.; Vallone, D.; Gothilf, Y.; Sanchez-Vazquez, F. J.; Foulkes, N. S.
    2012. The Neurobiology of Circadian Timing Amsterdam. Ed.: A. Kalsbeek, 41–57, Elsevier
  49. The Light Responsive Transcriptome of the Zebrafish: Function and Regulation
    Weger, B. D.; Sahinbas, M.; Otto, G. W.; Mracek, P.; Armant, O.; Dolle, D.; Lahiri, K.; Vallone, D.; Ettwiller, L.; Geisler, R.; Foulkes, N. S.; Dickmeis, T.
    2011. PLoS One, 6 (2), e17080/1–15. doi:10.1371/journal.pone.0017080
  50. A blind circadian clock in cavefish reveals that opsins mediate peripheral clock photoreception
    Cavallari, N.; Frigato, E.; Vallone, D.; Fröhlich, N.; Lopez-Olmeda, J. F.; Foa, A.; Berti, R.; Sanchez-Vazquez, F. J.; Bertolluci, C.; Foulkes, N. S.
    2011. PLoS biology, 9 (9), e1001142. doi:10.1371/journal.pbio.1001142
  51. It’s time to swim! Zebrafish and the circadian clock
    Vatine, G.; Vallone, D.; Gothilf, Y.; Foulkes, N. S.
    2011. FEBS Letters, 585, 1485–1494. doi:10.1016/j.febslet.2011.04.007
  52. Glucocorticoids and circadian clock control of cell proliferation: At the interface between three dynamic systems
    Dickmeis, T.; Foulkes, N. S.
    2011. Molecular and Cellular Endocrinology, 331, 11–22. doi:10.1016/j.mce.2010.09.001
  53. Multiple par and E4BP4 bZIP transcription factors in zebrafish: diverse spatial and temporal expression patterns
    Ben-Moshe, Z.; Vatine, G.; Alon, S.; Tovin, A.; Mracek, P.; Foulkes, N. S.; Gothilf, Y.
    2010. Chronobiology International, 27, 1509–1531. doi:10.3109/07420528.2010.510229
  54. Cellular signaling and time: links between light, clocks and the cell cycle
    Mracek, P.; Cavallari, N.; Lahiri, K.; Radeva, S.; Vallone, D.; Foulkes, N. S.
    2009. 26th Congress of the European Society of Comparative Biochemistry and Physiology, Innsbruck, A, September 6-9, 2009 Comparative Biochemistry and Physiology A, 154(2009) Suppl.1, (Abstract)
  55. Light directs zebrafish period2 expression via conserved D and E boxes
    Vatine, G.; Vallone, D.; Appelbaum, L.; Mracek, P.; Ben-Moshe, Z.; Lahiri, K.; Gothilf, Y.; Foulkes, N. S.
    2009. Plos Biology, e1000223/1-18, 7. doi:10.1371/journal.pbio.1000223